
J

J. Quant. Spectrosc, Radiat, Transfer Vol. 50, No, 6, pp. 635_546, 1993

Printed in Great Britain

0022-4073/93 $6.00 + 0,00

Pergamon Press Ltd

NASA-CR-204352 =\

A HIGHLY ACCURATE VOIGT FUNCTION ALGORITHM

Z. SHIPPONY'[" and W. G. READ

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.

(Received 23 February 1993)

Abstract--A complex Voigt lineshape algorithm is presented whose maximum relative error
over the complex plane is less than I x 10 -8. The algorithm consists of series, rational
approximations and Gauss-Hermite integrations which makes it suitable as a general purpose
software module for a wide variety of uses, including a Voigt function standard.

INTRODUCTION

The Voigt lineshape--a convolution between a Doppler velocity distribution and a first order

collisional relaxation--is important for characterizing the frequency response in molecular

spectroscopy and atmospheric radiative transfer. An algorithm for the complex Voigt function is

needed for the polarized radiative transfer problem, where both the absorption and dispersion
shapes must be included in the calculations. Furthermore, the real Voigt function frequency

derivative is needed for applications requiring "linear" inversion of the lineshape function in terms
of the linewidth parameters. The complex Voigt function is

W(z) =-i -I_ exp!_--t 2} dt, (1)
_ d__ z--t

where the customary definitions, z = x - iy and x = I_/_(v - v0)/_,D and y = ,V/_2yL/_D are used.

The collision and Doppler broadening widths are _t and _D, respectively. Equation 1 is related to
the complex complementary error function (erfc{- iz}) according to

W(z) = exp{ - z 2}erfc{ - iz } (2)

for y > 0. Equation 2 cannot be evaluated in closed form. Consequently a number of algorithms

have been developed for evaluating Eq. 2 which fall into three basic classes. A summary of these
is given in a recent article by Schreier. t

Within the three classes, those incorporating a combination of series, asymptotic and continued
fraction expansions along with rational approximations and Gauss-Hermite integrations appear

to provide the greatest accuracy with the minimum computation time. The algorithm described here

incorporates these principles, and is more accurate and quicker than that given by Armstrong, z
which was used as the accuracy standard by Schreier._ However, it is slower than some of the less

accurate algorithms as that of Hui et aP incorporating similar methods. As such, this algorithm

is most useful when high accuracy is desired and as a Voigt function standard.

COMPUTATIONAL PROCEDURE

The approach employed here is an extension of Drayson's algorithm 4 with improved series
coefficients and rectangular regions. The computational regions are depicted in Fig. I. The

calculations within each region are computed as follows.

Region 1

The method used is the same as Drayson. W(z) is evaluated with

2i
W(z) = exp{--z 2} + _ F(z), (3)

tTo whom all correspondence should be addressed.

635

636 Z. Sxw_NY and W. G. R_^D

>-

6

4-

• II

2-

0

0

IV

III

I

I [I

IV

I i i J

1 2 3 4 5 5.8 7

X

Fig. I. Computational regions used for evaluating the Voigt function.

where

F(z) = exp{ -z 2} t_
exp{t 2} dt

is the Dawson function when z(=x) is real. Expanding F(z) in a Taylor series about x produces

a recursion relation among the series coefficients,

2
do= F(x),dt = l - 2xdo,d,+, - (xd, + d, ,) forn=l,2 (4)

n+l

The Dawson function is evaluated for x = 0.0 to x = 5.0 in 0.5 steps using an adaptive Gauss-

Legendre quadrature (with 10-16 accuracy). This forms the basis for a Taylor series approximation

to Dawson's function for any x. The Dawson function values are presented in Table 1. This differs

from Ref. 4, where a Chebyshev expansion is used as an approximation to Dawson's function.

After F(x) is evaluated, Drayson's Taylor series (in y) is used to obtain the final complex Voigt

function. The series order is determined by an empirical function which differs from Drayson's as

a result of the different region being used here. The function used here is best described by the

FORTRAN code fragment,

if (x .It. 3.0) then

j=9

q= 16.0

else if (x .lt. 4.0) then

j=8
q= 17.0

else

j=7
q = 14.0

endif

n = min(j + nint(q • (y - O.1)/0.9), 25)

Table 1. Dawson function values between x = 0.0 and x = 5.0.

F(x) _ F(z)

0.0000000000000000 3.0 0.1782710306105583

0.4244363835020223 0.1496215930807565

0.5380795069127685

1.5 U.4282490710853986 4_
2.0 0.3013403889237919

0.2230837221674355

0.1293480012360052

0.1140886102268250

0.102134074424276_

Voigt function algorithm 637

where n is the number of terms and nint(r) is a function that computes r + 0.5 prior to integer

conversion.

Region 2

The six coefficient rational approximation given by Hui et al 3 is used.

Region 3

A complex Taylor series expansion of W(z) whose coefficients are based upon exact (10 -16

relative error) function evaluations of the Voigt in region 3. The gridding covers i.0 _< x _< 5.0 and

1.0 _<y _< 5.0 in 1.0 steps in each axis. Complex Voigt [W(z)] values are given in Table 2. These

are converted to Taylor coefficients, which are used as an approximation to the complex Voigt

function, by making use of the recursive expression of W(z) derivatives as described in Ref. 5.

The complex Voigt at (x, y) is evaluated by locating the nearest (x0, Y0) grid point in the table

and using the Taylor series expansion appropriate for that point. Fewer than 14 Taylor series terms

guarantee 10 -8 accuracy.

Region 4

In this region an eight point Gauss-Hermite quadrature is used.

ACCURACY AND COMPUTING TIMES

The speed and accuracy of this approach is contrasted with some widely used algorithms. A

reference Voigt function was generated from an adaptive Gauss-Legendre quadrature whose

accuracy was maintained at 10 -_6. Figures 2-5 show the accuracy of this algorithm and those of

Table 2. W(z) function values between 1.0 _<x _<5.0 and 1.0 _<y _<5.0.

10 1.0

1.0 0.3047442052569126

2.0 O.1402395813662779

3.0 0.0653177772890470

4.0 0.0362814564899886

0.0230031325940600

aeal(W(z))
y - axis values

2.0

0.2184926152748907

0.1479527595120158

0.0927107664264433

0.0596869296104459

0.0406436763334944

3.0

0.1642611363929863

0.1307574696698486

0.0964025055830445
0.0697909616496483

0.0512259965673866

1.0

2.0

3.0

4.0

aeal(W(z))
y - axis values

x I 4.0 5.0

1.0 I 0.1298881599308405 0.1067977383980653

2.0 0.1121394779021160 0.0964981126066414

3.0 0.0909339041947653

4.0 0.0715704334263653

5.0 0.0559973771425239

1.0

0.2082189382028316

0.2222134401798991

0.1739183154163490

O.1358389510006551

O.l 103328325535800

0.0829877379769018

0.0692362095804914

0.0569654398881770

lmaginary(W(z))

y - axis values
2.0

0.0929978093926019

0.1311797170842179

0.1283169622282616

0.1132100561244882

0.0979873111565719

3.0

0.0501971351352486

0.0811126504774567

0.0912363260042188

0.0893400002403649

0.0828369131719072

1.0

2.0

3.0

4.0

lmaginary(W(z))

y - axis values
4.0 5.0

0.0307788608170588 0.0206040887146843

0.0534889938529669 0.0373516531563688

0.0655923305279143 0.0483893652029131

0.0693745186137715 0.0540702270359291

0.0682948856449228 0.0558387427753910

638 Z. SmpPoNv and W. G. READ

_2 _

-4

-6

-8

-10

-12

-14

VoigtL relative error, real (W(z))

6

10

X

0

Fig. 2. Logarithm of relative error: this paper's algorithm vs a Voigt standard.

Armstrong, 2 Drayson, 4 and Hui 3 for the real part of the Voigt function. The two dimensional grid
considered 50 x values spanning 0.0 _<x _< 10.0, and 30 y values covering 0.0 _<y _< 6.0 for a total

of 1500 points. The Hui algorithm employed Karp's modification given by Schreier. t All
calculations used double precision arithmetic. The peak relative error obtained from our algorithm

is less than 1 part in 10s greatly exceeding the accuracy of all others. The average and maximum

-6

-s

...a -10

-12

-14

Armstrong relative error, real (W(z))

_-J 6
J4

X

0

Fig. 3. Logarithm of relative error: the Armstrong algorithm vs a Voigt standard.

Voigt function algorithm

Drayson relative error, real (W(z))

639

-14
6

y 2 6
4

2 X

0

Fig. 4. Logarithm of relative error: the Drayson algorithm vs a Voigt standard.

10

relative error and average computer time per point are presented in Table 3. The programs, coded in
VAX FORTRAN as subroutines with no vectorization, were run on a MIPS RISC 3000 computer.

Our algorithm is 1.9 and 2.8 times slower than Hui's and Drayson's algorithms respectively, and
1.3 times faster than Armstrong's. FORTRAN code for the algorithm is in the Appendix.

-2

-4

-6

-8

O

-10
,d

-12

-14

Hui (p=6) relative error, real (W(z)) (Voigt function)

4 0

6

2 X
0

Fig. 5. Logarithm of relative error: the Hui algorithm vs a Voigt standard.

640 Z. SmPPONY and W. G. READ

Table 3. Comparison of accuracy and times for different
algorithms.

Algorithm Peak Average
Relative Relative

Error Error

This Work 5 x 10 -9 6 × 11)-11

Armstrong 2 1 x 10 -4 2 x 10 -9

Draysou 4 6 × 10 -4 1 × 10 -6

Hui 3 6 × 10 -s 4 × 10 -7

A ver_£ge

time pc*

Point (IL sec)

53.3

68.6

19.0

28,0

CONCLUSION

A Voigt algorithm is presented that is simple to implement, yet highly accurate for all

combinations of x and y. The complex Voigt function is computed, so the algorithm can be used

for derivatives and molecular line dispersion in addition to absorption computations. For

applications where speed is of primary concern, Drayson's or Hui's algorithm (which compromise

accuracy for speed) are the methods of choice especially if other uncertainties exceed one part in

10. 4 When high accuracy is needed, this algorithm's greater accuracy is desirable (typically 4-5

orders of magnitude better than the faster routines). This accuracy is achieved with a faster

algorithm than that of Armstrong 2 which has been recognized as the most accurate among the

single value Voigt function routines, l

Acknowledgements--The authors thank Drs Joe' W. Waters and William Lahoz for helpful comments. This work was
performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

REFERENCES

1. F. Schreier, JQSRT 48, 743 (1991).
2. B. H. Armstrong, JQSRT 7, 61 (1967).

3. A. K. Hui, B. H. Armstrong, and A. A. Wray, JQSRT 19, 509 (1978).

4. S. R. Drayson, JQSRT 16, 611 (1976).
5. M. Abramowitz and A. Stegun. Dover, p. 298, New York, NY (1970).

APPENDIX

Voigt Subroutine FORTRAN Source Code

Subroutine VoigtL(x,y,u,v)
**

C *

c Computes the Voigt function: Integral from - to + Infinity of: *
C *

c (ylPi) *Zxp (-t,t)I (y,y+ (x-t)* (x-t)) dt *
C *

c and : *
C *

c (i/Pi)*(x-t)*Exp(-t*t)/(y*y+(x-t)*(x-t)) dt *
C *

c Developed by Z. Shippony, Jet Propulsion Laboratory (November/1990) *
C *

c Here: *
c x = sqrt(In 2) * (v - vO) / aD (x >= 0.0) *
c y = sqrt(in 2) * aLI aD (y >= 0.0) *
C *

c Where v is the wave number, vO is the line center wave number, aL *
c is the Lorentzian line half-width and aD is the Doppler line *
c half-width. *
C$*****_*************************_********************************_*****

Implicit real*8 (a-h,o-z)
Parameter (xf=5.8OO)
Parameter (ys=l.ODO, yf=5.0DO)
if(y.gt.yf.or.x.gt.xf) then

Call VoigtH(x,y,u,v) ! Region 4
else

if(y.gt.ys) then
if (x.ge.ys) then

Call VoigtR3(x,y,u,v) ! Region 3

Voigt function algorithm 641

else

Call VoigtR2(x,y,u,v) Region 2

endif

else

Call VoigtRl(x,y,u,v) Region 1

endif

endif

Return

End

C ...

Subroutine VoigtRl(x,y,u,v)

C**************************_**********************_*********************

C *

c Computes the Voigt function for the region (xs <= x < = xf, y <= ys) *

c (Here xs = 0.0, xf = S.8, ys = 1.0) *
C *

c Based on the algoritm described in: *
c *

c "Rapid Computation of the Voigt Profile" by S. R. Drayson, *

c JQSRT, Vol. 16, 511, (1976). *

C *

c (Modified by Z. Shippony, Jet Propulsion Laboratory, November/1990) *

C *

C***

Implicit none

Real*8 xtf,delx,Tiny

Integer maxd,maxr,maxf

Parameter (xtf = 5.0dO, maxd = II, maxr = 25, maxf = 13)

Parameter (delx = xtf / (maxd-l), Tiny = l.Od-12)

Real*8 Dowson(maxd),Fcoef(maxf,maxd),hn(maxd), q, p, y2, EpsLn,

dyr, dyi, zi, zr, ri(maxr), v, u, dx, x, y, twovspi

Logical First

Integer*4 i, 3, n

SAVE First, ri, hn, Fcoef, EpsLn
Data First/.True./

Data twovspi /1.1283791670955125739d0/ ! 2.0 / Sqrt(Pi)

c Dawson function (F(z)) table, for y = O, x = 0.0 to: 5.0dO dx: 0.5

Data Dowson / O.OdO , 4.244363835020223d-I, 5.380795069127685d-I,

4.282490710853986d-I, 3.013403889237919d-1, 2.230837221674355d-I,

& 1.782710306105583d-1, 1.496215930807565d-I, 1.293480012360052d-1,

1. 140886102268250d-1, 1.021340744242768d-1 /

if (First) then

First = .False.

EpsLn = Dlog(1.0d-8)

do 10 i = 1, maxr

ri(1) = -2.0dO / Dfloat(i)

10 Continue

Compute Dawson's function at mesh points
do 30 i = I, maxd

u = Dfloat(i - 1) * delx

hn(i) = u

p = Dowson(i)

q = 1.0dO - 2.0dO * u * p
Fcoef(l,i) = q

do 20 j = 2, maxf

v = (U * q + p) * ri(j)

Fcoef(j,i) = v

p=q

q-- v
20 Continue

30 Continue

endif

Compute Dawson's function at x from Taylor series

y2ffiy*y
= Int(x / delx + 0.5) + 1

n = minO(3, maxd)

dx = x - hn(n)

p = Dabs(dx)

if (p.le.Tiny) then
u = Dowson(n) ! F(x)

else

u = maxf

v = O.OdO

642 Z. SnmPONY and W. G. I_AD

if(p.lt.1.0) u = EpsLn / Dlog(p)

j = int(u + 0.5)

i = minO(j, maxf)

do 40 j = I, I, -I

v = dx * v + Fcoef(j,n)

40 Cont inue

u = dx * v + Dowson(n) ! F(x)

endif

if (y. le.Tiny) then

v = twovspi * u

u = Dexp(-x*x)

Return

endif

c** Taylor series expansion about y = 0.0

c Compute no. of terms to use before truncation:

if(x.lt.3.0) then

J =9

q = 16.0
else if(x.lt.4.0) then

j =8

q= 17.0

else

j=7
q= 14.0

endif

p = q * (y - 0.1) / 0.9

i = j + Int(p + 0.5)
n = minO(i, maxr)

q= u
v = 1.OdO - 2.0dO * x * u

zr = u

zi = y* v

dyr = O.OdO

dyi = y
do 50 i = 2, n

p = dyr

dyr = -dyi * y !

dyi = p * y i = dy'n

u = (x * v + q) * ri(i)

zr = zr + u * dyr

zi = zi + u * dyi

q = v

V = U

50 Continue

p = -2.0d0 * x * y

q = Dexp(y2 - x * x)

u = q * Dcos(p) - twovspi * zi

v = q * Dsin(p) + twovspi * zr

Return

End

Number of terms in the series

F(x)
F' (x)

dy = Cmplx(0.0,y)

Exp(-z*z) + 2*i*F(z)/Sqrt(Pi)

C ...

Subroutine VoigtR2(x,y,u,v)

c Computes the Voigt function for the region: *

c (0.0 <= x < 1.0, 1.0 <= y <= 5.0) *

C *

c Hui's method was coded according to: *

c *

c "Rapid computation of the Voigt and complex error function" *
C *

c by: A.K. Hui, B.H. Aramstrong and A.A. Wray, *

c JQSRT, Vol 19, 506, (1978). *

C *

c Here: *

c x = sqrt(In 2) * (v - v0) IaD (x >= 0.0) *

c y = sqrt(In 2) * aL / aD (y >= 0.0) *

C *

c Where v is the wave number, vO is the line center wave number, ai *

c is the Lorentzian line half-width and aD is the Doppler line *

c half-width. *

C

Voigt function algorithm 643

Implicit real*8 (a-h,o-z)
Dimension a(7),b(7)

Complex*16 z,az,dz,w

c Hui's (p = 6) rational approximation coefficients:

Data a / 122.607931777104326d0, 214.382388694706425d0,

& 181.928533092181549d0, 93.155580458138441d0,

30.180142196210589d0, 5.912626209773153d0,
& 0.564189583562615d0 /

Data b / 122.607931773875350d0, 352.730625110963558d0,

457.334478783897737d0, 348.703917719495792d0,

170.354001821091472d0, 53.992906912940207d0,

& 10.479857114260399d0 /

c Region: (0.0 <= x < 1.0, 1.0 <= y <= 5.0)
c Hui (p = 6) algorithm:

z = Dcmplx(y,-x)
az = a(1)÷z*(a(2)+z*(a(3)+z*(a(4)+z*(a(5)+z*(a(6)+z*a(7))))))

dz = b(1)÷z*(b(2)+z*(b(3)*z*(b(4)+z*(b(5)+z*(b(6)+z*(b(7)+z))))))
W = az / dz

u = Drool(w)

v = Dimag(w)

Return

End

C ...

Subroutine VoigtR3(x,y,u,v)

**

c Computes the Voigt function for the region: *

c (xs <= x < = xf, ys <= y <= yf) *
C *

c (Here xs = 1.0, xf = 5.8, ys = 1.0, yf <= 5.0) *

c *

C This Code was developed by Z. Shippony, *
c Jet Propulsion Laboratory (November/1990) *
C *

c Here: *

c x = sqrt(in 2) * (v - vO) / aD (x >= 0.0) *

c y = sqrt(in 2) * aL / aD (y >= 0.0) *

C *

c Where v is the wave number, vO is the line center wave number, aL *

c is the Lorentzian line half-width and aD is the Doppler line *
c half-width. *

C *

**

Implicit real*8 (a-h,o-z)
Parameter (xs=l.ODO, xf=5.8DO)

Parameter (ys=l.ODO, yf=5.0DO)

Parameter (dx=l.ODO, dy=l.ODO)
Parameter (maxx = 5, maxy = 5, nmax = 13)

Parameter (Tiny = l.Od-12, Eps = l.Od-8)

Logical First

Dimension wr(maxx,maxy),wi(maxx,maxy),Fn(nmax)

Complex*f6 wd(nmax,maxx,maxy),z,w,az,dz,ds,Sum,srml

SAVE First, dxh, dyh,

c Table for w(z) = w(x,y)

c x = 1.0,..., 5.0, Step:

c y = 1.0,..., 5.0, Step:

Data ((wr(i,j),]=l,5)

& 3.047442052569126D-I

& 1.298881599308405D-I

& 1.479527595120158D-I

& 9.649811260664139D-2

& 9.640250558304454D-2

& 3.628145648998864D-2

& 7.157043342636532D-2

& 4.064367633349437D-2

wd

1.0

1.0

i=1,5)/

2. 184926152748907D-1
1. 067977383980653D-1

1. 307574696698486D-1
6.531777728904696D-2

9. 093390419476534D-2

5. 968692961044590D-2

6. 923620958049143D-2
5. 122599656738663D-2

& 5.696543988817697D-2 /

Data ((wi(i,j),]=1,5),i=l,5)/

& 2.082189382028316D-I, 9.299780939260188D-2

& 3.077886081705883D-2, 2.060408871468425D-2

k 1.311797170842179D-I, 8.111265047745665D-2

& 3.735165315636876D-2, 1.739183154163490D-I

& 9.123632600421876D-2, 6.559233052791429D-2

& 1.358389510006551D-1, 1.132100561244882D-1

& 6.937451861377146D-2, 5.407022703592907D-2

1.642611363929863D-1,

1.402395813662779D-1,
1.121394779021160D-1,

9.271076642644334D-2,

8.298773797690175D-2,

6.979096164964831D-2,

2.300313259405996D-2,
5.599737714252388D-2,

5.019713513524858D-2,

2.222134401798991D-1,

5.348899385296694D-2,

1.283169622282616D-1,

4.838936520291309D-2,

8.934000024036491D-2,

1.103328325535800D-1,

644 Z. SmPPoNY and W. G. READ

9.798731115657190D-2, 8.283691317190719D-2, 6.82948856_92278D-2,
k 5.583874277539103D-2 /

Data First/.True./

Data srml/(O.OdO,l.OdO)/

Data SPi/1.T724538509055160273dO/) Sqrt(Pi)

if(First) then

Compute all the necessary derivatives of W(z) at lash points:

(For the recursive expression of W(z) derivatives, see "Handbook of

Mathematical functions", M. Abramowitz & A. Stegun, Dover publications,

Nov. 1970, pp. 298, Eq.: 7.1.21)

First = .False.

dxh = 0.SdO * dx

dyh = 0.Sd0 * dy
do 10 i = 1, nmax

Fn(i) = -2.0dO / Dfloat(i+l)

10 continue

xx = xs - dx

do 40 ix = 1, maxx

XX = XX ÷ dx

yy = ys - dy

do 30 iy = i, maxy

yy = yy + dy

z = Dcmplx(xx,yy)

v = Dcmplx(wr(ix,iy),wi(ix,iy))
ds = 2.0dO * (srml / SPi - z * w)

wd(1,ix,iy) = ds

do 20 i = 1, nmax-1

az = Fn(i) * (w + z * ds)

wd(i+l,ix,iy) " az
W = ds

ds = az

20 continue

30 continue

40 continue

endif

Region: (xs <= x <= xf, ys <= y <= yf)

Using Taylor series expansion for W(z).

ix = 1 + Int((x-xs) / dx)

xx = xs + (ix - i) * dx

if(x-xx.gt.dxh) ix = ix + 1

if(ix.gt.maxx) ix = maxx
xx = xs + (ix - 1) * dx

iy = I + Int((y-ys) / dy)

yy = ys + (iy - 1) * dy

if(y-yy.gt.dyh) iy = iy + i

if(iy.gt.maxy) iy = maxy
yy = ys + (iy - I) * dy

u = wr(ix,iy)

v = wi(ix,iy)

p m X - XX

q=y-yy
if (Dabs (p) .it. Tiny. and. Dabs (q) .It. Tiny) Return

dz = Dcmplx(p,q)

q = Dsqrt(p * p + q * q)

p = Eps / Cdabs(wd(l,ix,iy))

p = Dlog(p) / Dlog(q)

+ minO(nmax-l,Int(p))n = 1
Sum = Dcmplx(O.OdO,O.OdO)

do 5D i = n, 1, -I

Sum = dz * Sum + wd(i,ix,iy)

50 continue

w • dz * Sum

u = u + DReal(w)

v = v + Dlmag(w)
Return

End

C ...

Subroutine VoigtH(x,y,u,v)

c Computes the complex Voigt function: (i/pi)*integral from - to + infinity *

c of : exp(-t*t)/(z -t) dt, where z=(x+iy), x, y >= O. Using Gauss-Hermite *

Voigtfunctionalgorithm 645

c Quadrature (8 points). The real part is u, the integral o_:
C

c (y/pi)*Exp(-t*t)/(y*y + (x-t)*(X-t)) dt
c

c The imaginary part is v, the integral of:

C

c (i/pi)*(x-t)*Exp(-t*t)/(y*y + (x-t)*(x-t)) dt

C

Implicit Real*8 (a-h,o-z)
Parameter (N = 4)

Dimension Gx(N), Gw(N)

c Note: The roots are both positive and negative !
Data Gx/

& 3. 8118699020732211685d-I, I. 1571937124467801947d0,

& 1.9816567566958429259dO , 2.9306374202572440192d0 /

Data Gw/

& 6.6114701255824129103d-i, 2. 0780232581489187954<I-1,

& 1.7077983007413475456d-2, 1.9960407221136761921d-4 /

Data Pi / 3. 1415926535897932385d0 / ! Pi

y2 = y* y
Sumu = O.OdO

Sumv = 0.0d0

do I0 i = I, N

t = Gx(i)

xpt = x + t

xmt = • - t

fm = 1.0d0 1 (y2 + xmt * xmt)

fp = 1.0d0 I (y2 + xpt * xpt)

Sumu - Sumu + Gw(i) * (fm + fp)

Sumv = Sumv ÷ Gw(i) * (xmt * fm + xpt * fp)

i0 Continue

u = y * Sumu I Pi

v = Sumv / Pi

Return

End

